VBA solving integrals

Excel Facts

Does the VLOOKUP table have to be sorted?
No! when you are using an exact match, the VLOOKUP table can be in any order. Best-selling items at the top is actually the best.
You mean numerically, or find and evaluate the indefinite integral?
 
Upvote 0
[Table="width:, class:grid"][tr][td="bgcolor:#C0C0C0"][/td][td="bgcolor:#C0C0C0"]
A​
[/td][td="bgcolor:#C0C0C0"]
B​
[/td][/tr][tr][td="bgcolor:#C0C0C0"]
1​
[/td][td]
5009.443​
[/td][td]A1: =Integral("(EXP(x + c) - EXP(-x)) / (x + d)", 5, 8, 100, "c", 2.8, "d", 2.2)[/td][/tr]
[/table]


Code:
Option Explicit

' shg 2011

'    Scope    Name                         Description
'   ------- ----------  -----------------------------------------------------

'   Public  Integral    Returns the definite integral of a function over a
'                       specified interval; sets up the function used by Func.
'                       Uses ArgReplace & SimpsonInt

'   Public  FuncEval    Evaluates a function with constant substitution. Uses
'                       ArgReplace.

'   Private ArgReplace  Replaces constants in an expression with values

'   Private SimpsonInt  Simpson integrator for a previously set up function

'   Private Func        Evaluates a previously setup function for a particular x

Dim oRE             As Object
Dim sFunc           As String

Function Func(x As Double) As Double
  Debug.Print oRE.Replace(sFunc, x)
  Func = Evaluate(oRE.Replace(sFunc, x))
End Function

Function Integral(Expression As String, _
                  xInitial As Double, xFinal As Double, Intervals As Long, _
                  ParamArray Constants() As Variant) As Variant
  ' shg 2011

  ' UDF or VBA

  ' Returns the numerical integration of Expression using the Composite
  ' Simpson's Rule

  '   Expression  Expression to integrate. Any valid Excel real-number
  '               expression; must include the integration variable "x", and
  '               may optionally contain constants.

  '   xInitial    Initial value of x

  '   xFinal      Final value of x

  '   Intervals   Number of intervals used for integration (will be rounded up
  '               to an even number). The value should be sufficiently large
  '               to achieve required accuracy. Larger values will take longer
  '               to compute.

  '   Constants   Optional; if included, must be an alternating list of
  '               strings (constant names) and numbers (constant values), one
  '               pair for each constant in Expression.

  '   Examples     =Integral("a*sin(x^2)+b*cos(x)", 0, 1, 100, "a", $A2, "b", B$1)
  '                =Integral("if(x=0, 1, sin(x)/x)", 0, PI(), 100)

  Dim nConst        As Long
  Dim iConst        As Long
  Dim sNam          As String
  Dim dVal          As Double

  If Intervals < 1 Then GoTo BadnInt

  If oRE Is Nothing Then
    Set oRE = CreateObject("VBScript.Regexp")
    oRE.Global = True
    oRE.IgnoreCase = True
  End If

  With oRE
    .Pattern = "\bx\b"
    If Not .Test(Expression) Then GoTo NoX

    If ArgReplace(Expression, CVar(Constants)) = False Then
      Integral = Expression

    Else
      ' ArgReplace changes the pattern, so set it again
      .Pattern = "\bx\b"
      sFunc = Expression
      On Error GoTo BadFunc
      Integral = SimpsonInt(xInitial, xFinal, (Intervals + 1) \ 2)
      ' See note in AdaptiveSI below
      '            Integral = AdaptiveSI(xInitial, xFinal)
    End If
  End With

  Exit Function

BadnInt:
  Integral = "Intervals must be > 0"
  Exit Function
NoX:
  Integral = "Integration variable ""x"" does not appear in Expression"
  Exit Function

  ' Error handler for Func
BadFunc:
  Integral = "Unable to evaluate " & sFunc
  Exit Function
End Function

Public Function FuncEval(Expression As String, _
                         ParamArray Constants() As Variant) As Variant
  ' shg 2011
  ' UDF Only

  ArgReplace Expression, CVar(Constants)
  FuncEval = Evaluate(Expression)
  If IsError(FuncEval) Then FuncEval = "Unable to evaluate " & sFunc
End Function

Private Function ArgReplace(Expression As String, _
                            Constants As Variant) As Boolean
  ' shg 2011
  ' VBA only

  ' Replaces the named arguments in Expression with values

  '   Expression  Expression containing named constants

  '   Constants   Alternating list of strings (constant names) and numbers
  '               (constant values), one pair for each constant in Expression.

  ' Returns True if parens in Expression are balanced and all substitutions made
  ' Otherwise returns False with error message in Expression.

  Dim nConst        As Long
  Dim iConst        As Long
  Dim sNam          As String
  Dim dVal          As Double

  If Len(Replace(Expression, "(", "")) <> Len(Replace(Expression, ")", "")) Then GoTo BadParens

  nConst = UBound(Constants) + 1

  If nConst Mod 1 Then GoTo BadPramList

  If oRE Is Nothing Then
    Set oRE = CreateObject("VBScript.Regexp")
    oRE.Global = True
    oRE.IgnoreCase = True
  End If

  With oRE
    For iConst = 0 To nConst - 1 Step 2
      ' parameters must be {string, number, string, number, ...}
      If VarType(Constants(iConst)) <> vbString Or _
         VarType(Constants(iConst + 1)) <> vbDouble Then
        GoTo BadPramList

      Else
        sNam = Constants(iConst)
        dVal = Constants(iConst + 1)

        .Pattern = "\b" & sNam & "\b"
        If Not .Test(Expression) Then GoTo NoConstant
        Expression = .Replace(Expression, dVal)
      End If
    Next iConst
  End With

  ArgReplace = True
  Exit Function

BadParens:
  Expression = "Expression contains unbalanced parens"
  Exit Function
BadPramList:
  Expression = "Constants must be alternating strings (names) and numbers (values)"
  Exit Function
NoConstant:
  Expression = "Constant """ & sNam & """ does not appear in Expression"
  Exit Function
End Function

'============= G e n e r a l   S i m p s o n   I n t e g r a t o r =============

Private Function SimpsonInt(xi As Double, xf As Double, ByVal n As Long) As Double
  ' shg 2006

  ' Returns the integral of Func (specific to problem) over the interval xi to xf
  ' using Composite Simpson's Rule over 2n intervals

  Dim i             As Double  ' index
  Dim dH            As Double  ' step size
  Dim dF            As Double  ' cumulative integration of f

  If n < 1 Then Exit Function
  If xi = xf Then Exit Function

  n = 2 * n
  dH = (xf - xi) / n

  Debug.Print xi, Func(xi)
  dF = Func(xi)                           ' initial value

  For i = 1 To n - 1 Step 2
    Debug.Print xi + i * dH, Func(xi + i * dH)
    dF = dF + 4 * Func(xi + i * dH)     ' odd values
  Next i

  For i = 2 To n - 2 Step 2
    Debug.Print xi + i * dH, Func(xi + i * dH)
    dF = dF + 2 * Func(xi + i * dH)     ' even values
  Next i

  Debug.Print xf, Func(xf)
  dF = dF + Func(xf)                      ' final value

  SimpsonInt = dF * dH / 3
End Function

Private Function AdaptiveSI(xi As Double, xf As Double) As Double
  ' shg 2011

  ' Returns the integral of Func (specific to problem) over the interval xi to xf
  ' using Composite Simpson's Rule.

  ' This works fine, other than trying to figure out how to limit the number of
  ' bisections. The interface to Integral would need to change to eliminate the
  ' Intervals argument.

  Dim n             As Long    ' number of integration intervals
  Dim dH            As Double  ' interval width
  Dim i             As Double  ' index

  ' contributions of ...
  Dim dInF          As Double   ' initial and final values of f
  Dim dOdd          As Double   ' odd values of f
  Dim dEvn          As Double   ' even values of f

  Dim dDlt          As Double   ' delta in successive approximations

  If xi = xf Then Exit Function

  ' calculate for two intervals
  n = 2
  dH = (xf - xi) / n
  dInF = (Func(xi) + Func(xf)) * dH / 3
  dOdd = 4 * Func(xi + dH) * dH / 3
  AdaptiveSI = dInF + dOdd
  '    Debug.Print AdaptiveSI

  ' bisect repeatedly
  Do
    AdaptiveSI = AdaptiveSI + dDlt
    n = n * 2
    dH = (xf - xi) / n

    dInF = dInF / 2
    dEvn = dOdd / 4 + dEvn / 2

    dOdd = 0
    For i = 1 To n - 1 Step 2
      dOdd = dOdd + 4 * Func(xi + i * dH) * dH / 3  ' odd values
    Next i

    dDlt = dInF + dOdd + dEvn - AdaptiveSI
    '        Debug.Print n, dDlt, AdaptiveSI
  Loop Until AdaptiveSI = AdaptiveSI + dDlt Or n >= 1024
End Function
 
Upvote 0
Oops: There are several Debug.Print statements that should be removed.
 
Upvote 0

Forum statistics

Threads
1,223,243
Messages
6,170,967
Members
452,371
Latest member
Frana

We've detected that you are using an adblocker.

We have a great community of people providing Excel help here, but the hosting costs are enormous. You can help keep this site running by allowing ads on MrExcel.com.
Allow Ads at MrExcel

Which adblocker are you using?

Disable AdBlock

Follow these easy steps to disable AdBlock

1)Click on the icon in the browser’s toolbar.
2)Click on the icon in the browser’s toolbar.
2)Click on the "Pause on this site" option.
Go back

Disable AdBlock Plus

Follow these easy steps to disable AdBlock Plus

1)Click on the icon in the browser’s toolbar.
2)Click on the toggle to disable it for "mrexcel.com".
Go back

Disable uBlock Origin

Follow these easy steps to disable uBlock Origin

1)Click on the icon in the browser’s toolbar.
2)Click on the "Power" button.
3)Click on the "Refresh" button.
Go back

Disable uBlock

Follow these easy steps to disable uBlock

1)Click on the icon in the browser’s toolbar.
2)Click on the "Power" button.
3)Click on the "Refresh" button.
Go back
Back
Top