How to Generate 5/59 lotto numbers in 1 cell

testing lotto

New Member
Joined
Aug 7, 2011
Messages
29
I am looking for a way to generate 5 random lottery numbers sorted in numerical order in one cell, not 5 cells. for example, 03-13-22-39-51 contained in cell A1. Not 03 in cell A1 and 13 in B1, 22 in C1, 39 in D1, 51 in E1. I think it should be possible to do this ?
 
Ah.

There's one chance in 5,006,386 that you'll get all five balls.

If that happens, then one in 39 times you'll also get the powerball (5,006,386 * 39 = 1 in 194,249,054 of winning the jackpot)

The other 38 times you won't (5,006,386 * 39/38 = 1 in 5,138,133)
 
Upvote 0

Excel Facts

Square and cube roots
The =SQRT(25) is a square root. For a cube root, use =125^(1/3). For a fourth root, use =625^(1/4).
Hi Mirabeau,

I have been looking for a solution to an almost identical problem to that of 'testing lotto' when I came across the help you and Shg have provided (inlcuding your codes). I am interested and should be grateful for your help too.

I believe that your code for the 5/59 combination assumes that the 59 numbers are consecutive from 1 to 59. I have a similar problem. Mine is 6/30 (6 from 30 numbers). However, my 30 numbers are not consecutive from 1 to 30. They constitute different values between 1 and 50. BUT THEY ARE JUST 30 DIFFERENT NUMBERS. I have pasted the numbers below for your information:

9, 17, 44, 35, 11, 30, 12, 48, 38, 6, 20, 42, 24, 27, 32, 36, 15, 41, 45, 3, 2, 21, 39, 33, 14, 23, 46, 18, 28, 5

Please may I know how I can use your code to generate combinations of 6 numbers out of the above 30 values, and then match the combinations with the published lottery results.

Thanks for your anticipated help.

Kenny
 
Upvote 0
Is it always the same 30 numbers?

I'm not experienced enough with VBA to help you write the code, but if your set is always the same, can't you rank the values 1 to 30, have the code create a lotto number using the range of 6 numbers 1 to 30 and then swap 1 - 30 for the values you want?

For instance:
<TABLE style="WIDTH: 48pt; BORDER-COLLAPSE: collapse" cellSpacing=0 cellPadding=0 width=64 border=0><COLGROUP><COL style="WIDTH: 48pt" width=64><TBODY><TR style="HEIGHT: 15pt" height=20><TD id=td_post_2882233 style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; WIDTH: 48pt; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" width=64 height=20>1=2</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>2=3</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>3=5</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>4=6</TD></TR>
<TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>5=9</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>6=11</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>7=12</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>8=14</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>9=15</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>10=17</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>11=18</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>12=20</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>13=21</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>14=23</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>15=24</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>16=27</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>17=28</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>18=30</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>19=32</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>20=33</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>21=35</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>22=36</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>23=38</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>24=39</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>25=41</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>26=42</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>27=44</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>28=45</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>29=46</TD></TR><TR style="HEIGHT: 15pt" height=20><TD style="BORDER-RIGHT: #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; HEIGHT: 15pt; BACKGROUND-COLOR: transparent" height=20>30=48</TD></TR></TBODY></TABLE>
 
Upvote 0
Yes, it is always the same 30 numbers (given in my Post #45). I believe that it is possible to come up with a VB code to deal with the 30 non-consecutive numbers - if only one of our forum experts would be kind enough to help.

Meanwhile, it is not clear to me how your idea above could be incorporated into a code. Like you, I am not good with VBA at all. However, I am still hoping that someone will be able to help.

Thanks for your thoughtfulness.

Kenny
 
Last edited:
Upvote 0
This macro will do what you want to do, if someone can alter it to run in Excel 07. It was written for Excel with 64,000 rows.



Option Explicit




' PGC Set 2007
' Calculates and writes the Combinations / Permutations with/without repetition
' Assumes the result is written from row 1 down. If the total number of cells in a column
' is less than tha number of results continues in another group of columns to the right.
' vElements - Array with the set elements (1 to n)
' p - number of elements in 1 combination/permutation
' bComb - True: Combinations, False: Permutations
' bRepet - True: with repetition, False: without repetition
' vResult - Array to hold 1 permutation/combination (1 to p)
' lRow - row number. the next combination/permutation is written in lRow+1
' vResultAll - Array to hold all the permutations/combinations (1 to Total, 1 to p)
' iElement - order of the element to process in case of combination
' iIndex - position of the next element in the combination/permutation

' Sub CombPerm() deals with the input / output
' Sub CombPermNP() generates the combinations / permutations

Sub CombPerm()
Dim rRng As Range, p As Integer
Dim vElements As Variant, vResult As Variant, vResultAll As Variant, lTotal As Long
Dim lRow As Long, bComb As Boolean, bRepet As Boolean
Dim vResultPart, iGroup As Integer, l As Long, lMax As Long, k As Long

' Get the inputs and clear the result range (you may adjust for other locations)
Set rRng = Range("B5", Range("B5").End(xlDown)) ' The set of numbers
p = Range("B1").Value ' How many are picked
bComb = Range("B2")
bRepet = Range("B3")
Range("D1", Cells(1, Columns.Count)).EntireColumn.Clear

' Error
If (Not bRepet) And (rRng.Count < p) Then
MsgBox "With no repetition the number of elements of the set must be bigger or equal to p"
Exit Sub
End If

' Set up the arrays for the set elements and the result
vElements = Application.Index(Application.Transpose(rRng), 1, 0)
With Application.WorksheetFunction
If bComb = True Then
lTotal = .Combin(rRng.Count + IIf(bRepet, p - 1, 0), p)
Else
If bRepet = False Then lTotal = .Permut(rRng.Count, p) Else lTotal = rRng.Count ^ p
End If
End With
ReDim vResult(1 To p)
ReDim vResultAll(1 To lTotal, 1 To p)

' Calculate the Combinations / Permutations
Call CombPermNP(vElements, p, bComb, bRepet, vResult, lRow, vResultAll, 1, 1)

' Write the Combinations / Permutations
' Since writing to the worksheet cell be cell is very slow, uses temporary arrays to write one column at a time
Application.ScreenUpdating = False
If lTotal <= Rows.Count Then
Range("D1").Resize(lTotal, p).Value = vResultAll
Else
While iGroup * Rows.Count < lTotal
lMax = lTotal - iGroup * Rows.Count
If lMax > Rows.Count Then lMax = Rows.Count
ReDim vResultPart(1 To lMax, 1 To p)
For l = 1 To lMax
For k = 1 To p
vResultPart(l, k) = vResultAll(l + iGroup * Rows.Count, k)
Next k
Next
Range("D1").Offset(0, iGroup * (p + 1)).Resize(lMax, p).Value = vResultPart
iGroup = iGroup + 1
Wend
End If
Application.ScreenUpdating = True
End Sub

Sub CombPermNP(ByVal vElements As Variant, ByVal p As Integer, ByVal bComb As Boolean, ByVal bRepet As Boolean, _
ByVal vResult As Variant, ByRef lRow As Long, ByRef vResultAll As Variant, ByVal iElement As Integer, ByVal iIndex As Integer)
Dim i As Integer, j As Integer, bSkip As Boolean

For i = IIf(bComb, iElement, 1) To UBound(vElements)
bSkip = False
' in case of permutation without repetition makes sure the element is not yet used
If (Not bComb) And Not bRepet Then
For j = 1 To p
If vElements(i) = vResult(j) And Not IsEmpty(vResult(j)) Then
bSkip = True
Exit For
End If
Next
End If

If Not bSkip Then
vResult(iIndex) = vElements(i)
If iIndex = p Then
lRow = lRow + 1
For j = 1 To p
vResultAll(lRow, j) = vResult(j)
Next j
Else
Call CombPermNP(vElements, p, bComb, bRepet, vResult, lRow, vResultAll, i + IIf(bComb And bRepet, 0, 1), iIndex + 1)
End If
End If
Next i
End Sub
 
Upvote 0

Forum statistics

Threads
1,223,958
Messages
6,175,628
Members
452,661
Latest member
Nonhle

We've detected that you are using an adblocker.

We have a great community of people providing Excel help here, but the hosting costs are enormous. You can help keep this site running by allowing ads on MrExcel.com.
Allow Ads at MrExcel

Which adblocker are you using?

Disable AdBlock

Follow these easy steps to disable AdBlock

1)Click on the icon in the browser’s toolbar.
2)Click on the icon in the browser’s toolbar.
2)Click on the "Pause on this site" option.
Go back

Disable AdBlock Plus

Follow these easy steps to disable AdBlock Plus

1)Click on the icon in the browser’s toolbar.
2)Click on the toggle to disable it for "mrexcel.com".
Go back

Disable uBlock Origin

Follow these easy steps to disable uBlock Origin

1)Click on the icon in the browser’s toolbar.
2)Click on the "Power" button.
3)Click on the "Refresh" button.
Go back

Disable uBlock

Follow these easy steps to disable uBlock

1)Click on the icon in the browser’s toolbar.
2)Click on the "Power" button.
3)Click on the "Refresh" button.
Go back
Back
Top