You're welcome, hope they help. At first though it looks like your data would fit a Poisson distribution:
-asymmetrical.
-Left boarder at 0
-right boarder to infinite
-right skew
But after looking at the links above this probably wouldn't be the best fit of your data.
Good luck.
I think I have been confusing myself. Here's the raw data.
[TABLE="class: grid, width: 450"]
<tbody>[TR]
[TD="align: center"]
R/C
[/TD]
[TD="align: center"]
C[/TD]
[TD="align: center"]
D[/TD]
[TD="align: center"]
E[/TD]
[TD="align: center"]
F[/TD]
[TD="align: center"]
G[/TD]
[TD="align: center"]
H[/TD]
[TD="align: center"]
I[/TD]
[TD="align: center"]
J[/TD]
[TD="align: center"]
K[/TD]
[TD="align: center"]
L[/TD]
[TD="align: center"]
M[/TD]
[TD="align: center"]
N
[/TD]
[/TR]
[TR]
[TD="align: center"]
3
[/TD]
[TD]
NumWins
[/TD]
[TD="align: center"]
0
[/TD]
[TD="align: center"]
1[/TD]
[TD="align: center"]
2[/TD]
[TD="align: center"]
3
[/TD]
[TD="align: center"]
4[/TD]
[TD="align: center"]
5[/TD]
[TD="align: center"]
6[/TD]
[TD="align: center"]
7[/TD]
[TD="align: center"]
8[/TD]
[TD="align: center"]
9[/TD]
[TD="align: center"]
10
[/TD]
[/TR]
[TR]
[TD="align: center"]
4
[/TD]
[TD]
ActNum[/TD]
[TD="align: center"]
16
[/TD]
[TD="align: center"]
12 [/TD]
[TD="align: center"]
8 [/TD]
[TD="align: center"]
7 [/TD]
[TD="align: center"]
6 [/TD]
[TD="align: center"]
0 [/TD]
[TD="align: center"]
2 [/TD]
[TD="align: center"]
2 [/TD]
[TD="align: center"]
0 [/TD]
[TD="align: center"]
1 [/TD]
[TD="align: center"]
0
[/TD]
[/TR]
</tbody>[/TABLE]
Row 3 shows the number of wins in each streak. Row 4 shows how many times each length streak occurred. This team had 16 0-win streaks (back-to-back losses), 12 1-win streaks, 8 2-win streaks, etc.
The overall stats for this team are:
[TABLE="class: grid, width: 158"]
<tbody>[TR]
[TD]Wins[/TD]
[TD="align: center"]108[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]Losses[/TD]
[TD="align: center"]54[/TD]
[TD](Streaks)[/TD]
[/TR]
[TR]
[TD]Games[/TD]
[TD="align: center"]162[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]PWin[/TD]
[TD="align: center"]66.67%[/TD]
[TD][/TD]
[/TR]
</tbody>[/TABLE]
My goal is to calculate a
relative rating for each streak tally. I'd like to know which streak was the most over or under the expected tally, the next most, and so on.
Here are some of the calculations I have done. The row and column numbers are not consecutive because some results have been hidden for simplicity. Column Q shows the formulas used for the calculations.
[TABLE="class: grid, width: 750"]
<tbody>[TR]
[TD="align: center"]
R/C
[/TD]
[TD="align: center"]
C[/TD]
[TD="align: center"]
D[/TD]
[TD="align: center"]
E[/TD]
[TD="align: center"]
F[/TD]
[TD="align: center"]
G[/TD]
[TD="align: center"]
H[/TD]
[TD="align: center"]
I[/TD]
[TD="align: center"]
J[/TD]
[TD="align: center"]
K[/TD]
[TD="align: center"]
L[/TD]
[TD="align: center"]
M[/TD]
[TD="align: center"]
N[/TD]
[TD="align: center"]
Q[/TD]
[/TR]
[TR]
[TD="align: center"]
3[/TD]
[TD]
NumWins
[/TD]
[TD="align: center"]
0
[/TD]
[TD="align: center"]
1[/TD]
[TD="align: center"]
2[/TD]
[TD="align: center"]
3[/TD]
[TD="align: center"]
4[/TD]
[TD="align: center"]
5[/TD]
[TD="align: center"]
6[/TD]
[TD="align: center"]
7[/TD]
[TD="align: center"]
8[/TD]
[TD="align: center"]
9[/TD]
[TD="align: center"]
10[/TD]
[TD="align: center"]
Formulae [/TD]
[/TR]
[TR]
[TD="align: center"]
4[/TD]
[TD]
ActNum[/TD]
[TD="align: center"]
16
[/TD]
[TD="align: center"]
12 [/TD]
[TD="align: center"]
8 [/TD]
[TD="align: center"]
7 [/TD]
[TD="align: center"]
6 [/TD]
[TD="align: center"]
0 [/TD]
[TD="align: center"]
2 [/TD]
[TD="align: center"]
2 [/TD]
[TD="align: center"]
0 [/TD]
[TD="align: center"]
1 [/TD]
[TD="align: center"]
0
[/TD]
[TD]
[/TD]
[/TR]
[TR]
[TD="align: center"]
5[/TD]
[TD]
ExpNum[/TD]
[TD="align: center"]
18.00
[/TD]
[TD="align: center"]
12.00[/TD]
[TD="align: center"]
8.00[/TD]
[TD="align: center"]
5.33[/TD]
[TD="align: center"]
3.56
[/TD]
[TD="align: center"]
2.37[/TD]
[TD="align: center"]
1.58[/TD]
[TD="align: center"]
1.05[/TD]
[TD="align: center"]
0.70[/TD]
[TD="align: center"]
0.47[/TD]
[TD="align: center"]
0.31[/TD]
[TD]
=ExpPC*Streaks[/TD]
[/TR]
[TR]
[TD="align: center"]
6[/TD]
[TD]
NumErr[/TD]
[TD="align: center"]
-2.00[/TD]
[TD="align: center"]
=0.00[/TD]
[TD="align: center"]
=0.00[/TD]
[TD="align: center"]
+1.67[/TD]
[TD="align: center"]
+2.44[/TD]
[TD="align: center"]
-2.37[/TD]
[TD="align: center"]
+0.42[/TD]
[TD="align: center"]
+0.95[/TD]
[TD="align: center"]
-0.70[/TD]
[TD="align: center"]
+0.53[/TD]
[TD="align: center"]
-0.31[/TD]
[TD]
=ActNum-ExpNum[/TD]
[/TR]
[TR]
[TD="align: center"]
13[/TD]
[TD]
ActPC[/TD]
[TD="align: center"]
29.63%[/TD]
[TD="align: center"]
22.22%
[/TD]
[TD="align: center"]
14.81%[/TD]
[TD="align: center"]
12.96%[/TD]
[TD="align: center"]
11.11%[/TD]
[TD="align: center"]
0.00%[/TD]
[TD="align: center"]
3.70%[/TD]
[TD="align: center"]
3.70%[/TD]
[TD="align: center"]
0.00%[/TD]
[TD="align: center"]
1.85%[/TD]
[TD="align: center"]
0.00%[/TD]
[TD]
=ActNum/Streaks[/TD]
[/TR]
[TR]
[TD="align: center"]
14[/TD]
[TD]
ExpPC[/TD]
[TD="align: center"]
33.33%[/TD]
[TD="align: center"]
22.22%[/TD]
[TD="align: center"]
14.81%[/TD]
[TD="align: center"]
9.88%[/TD]
[TD="align: center"]
6.58%[/TD]
[TD="align: center"]
4.39%[/TD]
[TD="align: center"]
2.93%[/TD]
[TD="align: center"]
1.95%[/TD]
[TD="align: center"]
1.30%[/TD]
[TD="align: center"]
0.87%[/TD]
[TD="align: center"]
0.58%[/TD]
[TD]
=(PWin^NumWins)*(1-PWin)[/TD]
[/TR]
[TR]
[TD="align: center"]
15[/TD]
[TD]
PCErr[/TD]
[TD="align: center"]
-3.70%[/TD]
[TD="align: center"]
=0.00%[/TD]
[TD="align: center"]
=0.00%[/TD]
[TD="align: center"]
+3.09%[/TD]
[TD="align: center"]
+4.53%[/TD]
[TD="align: center"]
-4.39%[/TD]
[TD="align: center"]
+0.78%[/TD]
[TD="align: center"]
+1.75%[/TD]
[TD="align: center"]
-1.30%[/TD]
[TD="align: center"]
+0.98%[/TD]
[TD="align: center"]
-0.58%[/TD]
[TD]
=ActPC-ExpPC[/TD]
[/TR]
</tbody>[/TABLE]
Row 5 shows the expected tallies. It depends on the data in row 14. Row 6 shows the error in the tallies. The tallies themselves follow a geometric decay curve. (See formula in Q14.) But I was hoping that the errors might fit a normal distribution. When I originally posted this question, I asked about an asymmetric normal distribution. I think I was confusing myself between the tallies and the tally errors. The tallies have a lower limit of zero, but the tally errors should have a mean close to zero.
And similarly for rows 13-15. Row 13 shows the actual % of the tallies. Row 14 shows the expected %s. Row 15 shows the difference in these %s (the error). I thought that might also fit a normal distribution.
Anyway,I agree with you that none of these fit a Poisson.