Weighted Quadratic equation co-efficients

emoat

New Member
Joined
Apr 3, 2006
Messages
7
This is a bit more of a statistics problem than Excel problem, but thought I would give this forum another try since it worked so well in the past.
In Excel I am trying to find the coefficients for a quadratic equation that best fits a set of data. After some incredibly helpful advice from this forum several months ago I was able to solve this conundrum with the LINEST function in Excel (thanks pgc01!!).
The new problem is that I am trying to solve for the coefficients of a WEIGHTED quadratic equation. I need to find the coefficients (a, b, and c in the typical y = ax^2 + bx + c) for a set of data when the calibration is weighted by the inverse of concentration (1/x). I have managed this for a linear equation thanks to a post I found through a lot of searching (http://answers.google.com/answers/threadview/id/761806.html).
However I am stuck when trying to apply this to a quadratic equation. I have also been unsuccessful in trying to find the r^2 value for both the weighted linear and weighted quadratic curve.

If anyone has some idea of how to solve for these variables I’d be extremely grateful. If I have not explained something clearly or some sample data is needed, please just ask.
Thanks in advance!
 

Excel Facts

What is the fastest way to copy a formula?
If A2:A50000 contain data. Enter a formula in B2. Select B2. Double-click the Fill Handle and Excel will shoot the formula down to B50000.
Do you have an example dataset with known results?
 
Upvote 0
Do you have an example dataset with known results?

I've created an example data set with 5 results. x is the concentration (relative to an Internal Standard [IS], but we can pretty much ignore that for now... just know any final result is multiplied by the IS concentration which is 100). y is the ratio of analyte response to internal standard response (we can just call it instrument response). w is the weighting factor and is simply 1/x.
For the calibration (DATA SET):
(x, y, w)
(0.1, 0.132275132, 10)
(0.2, 0.239768499, 5)
(0.4, 0.535991714, 2.5)
(0.5, 0.659898477, 2)
(1, 1.323223065, 1)

Unknown sample result for testing a quad equation: (x, y) = (unknown, 1.173661852)

The instrument software comes up with the following 2 quadratic formulas (KNOWN RESULTS):
Quadratic - Equal weighting (ignore "w")
y = -0.0242 x^2 + 1.36 x - 0.014
R^2 value = 0.999427
Sample result on this curve = 88.59
I can find these a,b, and c values in Excel (2007) with LINEST and use that to find the sample result. =INDEX(LINEST(y Cal values, x Cal values^{1,2}),i) where i is set to 1, 2, or 3 to find a, b, and c in different cells.

Quadratic - 1/x weighting (THIS is what I am unable to reproduce)
y = 0.0213 x^2 + 1.31 x - 0.00464
R^2 value = 0.998556
Sample result on this curve = 88.63

What I am looking for is a way to find the a, b, and c values for the 1/x weighted quadratic curve. It would also be nice to be able to calculate the R^2 values for a weighted curve (both linear and quadratic).
If I have missed something or have not explained the situation/data sufficiently, please let me know. Hope this is useful and thanks to anyone for even taking a look at this!
 
Upvote 0
<TABLE style="WIDTH: 398pt; BORDER-COLLAPSE: collapse" border=0 cellSpacing=0 cellPadding=0 width=530><COLGROUP><COL style="WIDTH: 37pt" width=49><COL style="WIDTH: 44pt; mso-width-source: userset; mso-width-alt: 2706" width=59><COL style="WIDTH: 37pt" span=2 width=49><COL style="WIDTH: 243pt; mso-width-source: userset; mso-width-alt: 14811" width=324><TBODY><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; WIDTH: 37pt; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" height=16 width=49></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; WIDTH: 44pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" width=59></TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext 0.5pt solid; BACKGROUND-COLOR: #f3f3f3; WIDTH: 37pt; BORDER-TOP: windowtext 0.5pt solid; BORDER-RIGHT: #ece9d8" class=xl36 width=49>a</TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; WIDTH: 37pt; BORDER-TOP: windowtext 0.5pt solid; BORDER-RIGHT: windowtext 0.5pt solid" class=xl38 width=49 align=right>0.021351</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; WIDTH: 243pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" width=324></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" height=16></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext 0.5pt solid; BACKGROUND-COLOR: #f3f3f3; WIDTH: 37pt; BORDER-TOP: windowtext; BORDER-RIGHT: #ece9d8" class=xl36 width=49>b</TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: windowtext; BORDER-RIGHT: windowtext 0.5pt solid" class=xl38 align=right>1.310526</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" height=16></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext 0.5pt solid; BACKGROUND-COLOR: #f3f3f3; WIDTH: 37pt; BORDER-TOP: windowtext; BORDER-RIGHT: #ece9d8" class=xl36 width=49>cc</TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: windowtext; BORDER-RIGHT: windowtext 0.5pt solid" class=xl38 align=right>-0.00463</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" height=16></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext 0.5pt solid; BACKGROUND-COLOR: #f3f3f3; WIDTH: 37pt; HEIGHT: 12pt; BORDER-TOP: windowtext 0.5pt solid; BORDER-RIGHT: windowtext 0.5pt solid" class=xl32 height=16 width=49>x



</TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext; BACKGROUND-COLOR: #f3f3f3; WIDTH: 44pt; BORDER-TOP: windowtext 0.5pt solid; BORDER-RIGHT: windowtext 0.5pt solid" class=xl32 width=59>y</TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext; BACKGROUND-COLOR: #f3f3f3; WIDTH: 37pt; BORDER-TOP: windowtext 0.5pt solid; BORDER-RIGHT: windowtext 0.5pt solid" class=xl32 width=49>w</TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext; BACKGROUND-COLOR: #f3f3f3; WIDTH: 37pt; BORDER-TOP: windowtext 0.5pt solid; BORDER-RIGHT: windowtext 0.5pt solid" class=xl32 width=49>Wgt Fit</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 height=16 align=right>0.1</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl31 align=right>0.1322751</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 align=right>10.0</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl34 align=right>0.13</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37>D6 and down: =a*A6^2 + b*A6 + cc</TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 height=16 align=right>0.2</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl31 align=right>0.2397685</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 align=right>5.0</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl34 align=right>0.26</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 height=16 align=right>0.4</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl31 align=right>0.5359917</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 align=right>2.5</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl34 align=right>0.52</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 height=16 align=right>0.5</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl31 align=right>0.6598985</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 align=right>2.0</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl34 align=right>0.66</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 height=16 align=right>1.0</TD>


I used Solver to minimize D13 by changing a, b, and cc. (The LINEST solution for the unweighted case is at the bottom.)

<TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl31 align=right>1.3232231</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: white; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl35 align=right>1.0</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl34 align=right>1.33</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD>

</TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" height=16></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" height=16></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext 0.5pt solid; BACKGROUND-COLOR: #f3f3f3; WIDTH: 37pt; BORDER-TOP: windowtext 0.5pt solid; BORDER-RIGHT: windowtext 0.5pt solid" class=xl32 width=49>RMS Err</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" height=16></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl34 align=right>0.02</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37>D13: {=SQRT(AVERAGE(C6:C10*(D6:D10-B6:B10)^2))}</TD></TR><TR style="HEIGHT: 10.8pt; mso-height-source: userset" height=14><TD style="BORDER-BOTTOM: windowtext 0.5pt solid; BORDER-LEFT: windowtext 0.5pt solid; BACKGROUND-COLOR: #f3f3f3; WIDTH: 37pt; HEIGHT: 10.8pt; BORDER-TOP: windowtext 0.5pt solid; BORDER-RIGHT: windowtext 0.5pt solid" class=xl32 height=14 width=49>LINEST</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 height=16 align=right>-0.02418</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=right>1.361946</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=right>-0.01396</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 height=16 align=right>0.083435</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=right>0.0968896</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=right>0.021004</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 height=16 align=right>0.999427</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=right>0.0158434</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=middle>#N/A</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 height=16 align=right>1745.71</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=right>2</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=middle>#N/A</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR><TR style="HEIGHT: 12pt" height=16><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; HEIGHT: 12pt; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 height=16 align=right>0.876398</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=right>0.000502</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #e7e7e7; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl33 align=middle>#N/A</TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8"></TD><TD style="BORDER-BOTTOM: #ece9d8; BORDER-LEFT: #ece9d8; BACKGROUND-COLOR: #909090; BORDER-TOP: #ece9d8; BORDER-RIGHT: #ece9d8" class=xl37></TD></TR></TBODY></TABLE>
 
Last edited:
Upvote 0
Hi shg,
Thanks so much for coming up with a solution to that! I do appreciate the effort.
Since this will be applied several thousand times in the spreadsheet each time we run a calibration, I'm really hoping to find a means of using Excel based formulas to speed things up and maintain "simplicity". If I wind up using solver I'll probably need to write some vba macros which I'm trying to minimize in this project (it wouldn't be a huge problem for me to write the macros, I'm just trying to avoid them by design).

I have been attempting to use the equations found in a paper I stumbled across by Lavagnini and Magno (http://www.ltrr.arizona.edu/~jburns/Articles -Read/masslav.pdf). Section D has a set of equations for a weighted quadratic calibration curve. I have been able to solve for a and b, unfortunately c does not work for some reason (as I am interpreting the formula in the paper, it should be y[bar sub w] which is the sum of w*y / sum w).

If anyone has an idea how to solve the weighted quadratic mathematically (or even just solve for "c") I'd be very grateful.
 
Upvote 0
... which is the sum of w*y / sum w
That would be my assumption as well, but the result does not agree.
 
Upvote 0

Forum statistics

Threads
1,223,234
Messages
6,170,891
Members
452,366
Latest member
TePunaBloke

We've detected that you are using an adblocker.

We have a great community of people providing Excel help here, but the hosting costs are enormous. You can help keep this site running by allowing ads on MrExcel.com.
Allow Ads at MrExcel

Which adblocker are you using?

Disable AdBlock

Follow these easy steps to disable AdBlock

1)Click on the icon in the browser’s toolbar.
2)Click on the icon in the browser’s toolbar.
2)Click on the "Pause on this site" option.
Go back

Disable AdBlock Plus

Follow these easy steps to disable AdBlock Plus

1)Click on the icon in the browser’s toolbar.
2)Click on the toggle to disable it for "mrexcel.com".
Go back

Disable uBlock Origin

Follow these easy steps to disable uBlock Origin

1)Click on the icon in the browser’s toolbar.
2)Click on the "Power" button.
3)Click on the "Refresh" button.
Go back

Disable uBlock

Follow these easy steps to disable uBlock

1)Click on the icon in the browser’s toolbar.
2)Click on the "Power" button.
3)Click on the "Refresh" button.
Go back
Back
Top