Hi, Can someone help me with the below requirement. my job is at stake as it depends on this automation. Thank you in advance.
I am creating below pivot table where data is based on weekending dates and grouped in to months. In column A bold ones are senior managers and list below them are their reporting managers.
below is what my output sheet looks like.
below are the steps that needs to be done.
1. code has to as user for a date for which he needs data (In this case let us say 10/24/2020)
2. now it has to pull the values from pivot based on the date user provided and out put should be placed in the output sheet (it has to enter the values in first empty colum - in this case that is column "L"). Data needs to be pulled for both Senior manager and manager.
3. before pulling the data from pivot table code has to check if there are changes in terms of senior managers or managers with the output sheet. if there are any removal we can ignore but if there is a addition of manager under a senior manager then a new row needs to included under that particular senior manager in the output sheet and newly added manager name to be added in "B' Column of newly added row and his data needs to be pulled from pivot.
4. let us say we have a case where new senior manager is added then it has to add a row and respective name has to be entered in to "A" column of newly added row and data needs to be pulled from pivot.
I am creating below pivot table where data is based on weekending dates and grouped in to months. In column A bold ones are senior managers and list below them are their reporting managers.
UnapprovedTime.xlsm | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | M | |||
1 | Sum of DURATION | Column Labels | |||||||||||||
2 | September | September Total | October | October Total | Grand Total | ||||||||||
3 | Row Labels | 9/5/2020 | 9/12/2020 | 9/19/2020 | 9/26/2020 | 10/3/2020 | 10/3/2020 | 10/10/2020 | 10/17/2020 | 10/24/2020 | |||||
4 | DINGARI, HRUSHIKESH K | 40 | 32 | 40 | 40 | 27 | 179 | 58 | 160 | 323.39 | 1303.33 | 1844.72 | 2023.72 | ||
5 | NAIR, GIRISH | 27 | 27 | 18 | 40 | 203.39 | 783.33 | 1044.72 | 1071.72 | ||||||
6 | SARKAR, ASHIS | 40 | 32 | 40 | 40 | 152 | 40 | 40 | 40 | 440 | 560 | 712 | |||
7 | (blank) | 80 | 80 | 80 | 240 | 240 | |||||||||
8 | FAHEEM, WAEL | 72 | 32 | 40 | 165 | 0 | 309 | 120 | 286 | 470 | 4042.5 | 4918.5 | 5227.5 | ||
9 | AGARWAL, DINESH | 32 | 32 | 40 | 40 | 80 | 1012.5 | 1172.5 | 1204.5 | ||||||
10 | CHANDRASEKHARAN, RAJEEV | 40 | 32 | 40 | 125 | 0 | 237 | 80 | 246 | 350 | 2461.5 | 3137.5 | 3374.5 | ||
11 | CHANG, SOK WU W | 50 | 50 | 50 | |||||||||||
12 | WHITE, CHRIS L | 40 | 40 | 40 | 420.5 | 460.5 | 500.5 | ||||||||
13 | (blank) | 98 | 98 | 98 | |||||||||||
14 | GERMANOTTA, DOMINIC | 40 | 200 | 496 | 2856.25 | 3592.25 | 3592.25 | ||||||||
15 | BONOMO, MICHAEL | 40 | 40 | 81 | 931.75 | 1092.75 | 1092.75 | ||||||||
16 | HALL, TAMARA L | 160 | 160 | 160 | |||||||||||
17 | RANGARAJAN, JAGANNATH K | 160 | 415 | 1176 | 1751 | 1751 | |||||||||
18 | STRATFORD, CHRIS | 547.5 | 547.5 | 547.5 | |||||||||||
19 | STRATTON, LAURA M | 41 | 41 | 41 | |||||||||||
20 | GURUMURTHY, VIVEK | 180 | 157 | 237 | 365.5 | 431.5 | 1371 | 358 | 1130 | 3732.97 | 10694.83 | 15915.8 | 17286.8 | ||
21 | BASU, SANJAY | 43.5 | 415.33 | 458.83 | 458.83 | ||||||||||
22 | BELIHOMJI, ADIL | 140 | 125 | 170 | 257.5 | 246.5 | 939 | 201 | 711.5 | 1923 | 5843 | 8678.5 | 9617.5 | ||
23 | JAIN, ARCHANA | 40 | 67 | 68 | 185 | 360 | 117 | 324 | 1566.47 | 3700.5 | 5707.97 | 6067.97 | |||
24 | NIRANJANI, HIMANSHU | 32 | 40 | 72 | 40 | 40 | 200 | 700 | 980 | 1052 | |||||
25 | SUDHARSAN, VELAMUR S | 54.5 | 36 | 90.5 | 90.5 | ||||||||||
26 | MADERA, ISAAC A | 74 | 32 | 85 | 85 | 27 | 303 | 58 | 181 | 576.98 | 3234.05 | 4050.03 | 4353.03 | ||
27 | BAESSLER, CHRISTINA | 74 | 32 | 85 | 85 | 27 | 303 | 58 | 85 | 408.98 | 1393.55 | 1945.53 | 2248.53 | ||
28 | CASO, ANDREW T | 76 | 76 | 76 | |||||||||||
29 | GREGORY, LISA M | 96 | 144 | 469 | 709 | 709 | |||||||||
30 | JOBERT, SEBASTIEN | 595 | 595 | 595 | |||||||||||
31 | KERCHER, TODD E | 40 | 40 | 40 | |||||||||||
32 | PAONE, KELLY M | 246 | 246 | 246 | |||||||||||
33 | REPER, LAURA L | 24 | 334.5 | 358.5 | 358.5 | ||||||||||
34 | VENKATRAMAN, SRINIVAS | 80 | 80 | 80 | |||||||||||
35 | RAMANATHAN, SANKARAN | 40 | 218 | 911 | 1169 | 1169 | |||||||||
36 | DAMIANO, NATALIE M | 291.5 | 291.5 | 291.5 | |||||||||||
37 | JOSHI, ANIRUDHA A | 129 | 170 | 299 | 299 | ||||||||||
38 | RAY, ANDREW L | 40 | 89 | 369.5 | 498.5 | 498.5 | |||||||||
39 | (blank) | 80 | 80 | 80 | |||||||||||
40 | SINGH, SUMIT | 48 | 48 | 32 | 163 | 243 | 1812.25 | 2250.25 | 2298.25 | ||||||
41 | FUJINAMI, GARY G | 183 | 183 | 183 | |||||||||||
42 | KRIER, RYAN | 210.5 | 210.5 | 210.5 | |||||||||||
43 | PAFF, MARK D | 80 | 80 | 80 | |||||||||||
44 | SCHANEL, BARBARA J | 40 | 484 | 524 | 524 | ||||||||||
45 | SHARMA, RAJU | 70 | 70 | 70 | |||||||||||
46 | TANUKU, NAGESWARA RAO | 48 | 48 | 32 | 163 | 203 | 454 | 852 | 900 | ||||||
47 | (blank) | 330.75 | 330.75 | 330.75 | |||||||||||
48 | SIVAGANESH, SIVAGNANALINGAM | 423 | 423 | 423 | |||||||||||
49 | KAUL, ASHUMA S | 120 | 120 | 120 | |||||||||||
50 | MYLAVARUPU, VENKAT S | 183 | 183 | 183 | |||||||||||
51 | THAKER, DHAVAL V | 80 | 80 | 80 | |||||||||||
52 | (blank) | 40 | 40 | 40 | |||||||||||
53 | SLY, DAVID G | 44 | 44 | 85 | 1523.5 | 1608.5 | 1652.5 | ||||||||
54 | BARNAK, ROBERT W | 44 | 44 | 80 | 80 | 124 | |||||||||
55 | BILLINGER-JONES, ANTOINETTE M | 40 | 281 | 321 | 321 | ||||||||||
56 | FONTANA, OTTAVIO S | 45 | 282 | 327 | 327 | ||||||||||
57 | HAVEWALA, ASPI | 191.5 | 191.5 | 191.5 | |||||||||||
58 | MATEO, ALFRED A | 523 | 523 | 523 | |||||||||||
59 | (blank) | 166 | 166 | 166 | |||||||||||
60 | ZIAEE, KAMRAN | 80 | 142 | 389.5 | 507 | 257.5 | 1376 | 261 | 574 | 549 | 2539.5 | 3923.5 | 5299.5 | ||
61 | CHAKRAVARTY, SHOMA | 655 | 655 | 655 | |||||||||||
62 | KUMAR, NANDA | 78 | 309.5 | 427 | 257.5 | 1072 | 165 | 417.5 | 390.5 | 1262 | 2235 | 3307 | |||
63 | PASTOR, RICHARD | 51 | 51 | 51 | |||||||||||
64 | SEKAR, KALYANI | 392 | 392 | 392 | |||||||||||
65 | (blank) | 80 | 64 | 80 | 80 | 304 | 96 | 156.5 | 158.5 | 179.5 | 590.5 | 894.5 | |||
66 | Grand Total | 446 | 395 | 791.5 | 1206.5 | 791 | 3630 | 927 | 2734 | 6694.34 | 29340.21 | 39695.55 | 43325.55 | ||
Pivot |
below is what my output sheet looks like.
Overall Shankar_Cox_UnapprovedTime.xlsm | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | J | K | L | ||||||||||
1 | ||||||||||||||
2 | YTD to OCT 10 | YTD to OCT 17 | YTD to OCT 24 | |||||||||||
3 | ||||||||||||||
4 | GERMANOTTA, DOMINIC | 7747.33 | 3204.5 | |||||||||||
5 | BONOMO, MICHAEL | 1697 | 829.5 | |||||||||||
6 | HALL, TAMARA L | 1306.33 | 295.5 | |||||||||||
7 | PRADHAN, JEETENDRA | 1243.5 | 279 | |||||||||||
8 | RANGARAJAN, JAGANNATH K | 2760.5 | 1675.5 | |||||||||||
9 | STRATFORD, CHRIS | 740 | 85 | |||||||||||
10 | STRATTON, LAURA M | NA | 40 | |||||||||||
11 | ((blank) | NA | NA | |||||||||||
12 | DINGARI, HRUSHIKESH K | 6955 | 3494 | |||||||||||
13 | NAIR, GIRISH | 2141.5 | 2829.5 | |||||||||||
14 | SARKAR, ASHIS | 1842 | 584.5 | |||||||||||
15 | VENKATRAMAN, SRINIVAS | 1654 | NA | |||||||||||
16 | HUGHES, GEORGE L | 246 | NA | |||||||||||
17 | THAKER, DHAVAL V | 942.5 | ||||||||||||
18 | (blank) | 129 | 80 | |||||||||||
19 | FAHEEM, WAEL | 6901.43 | 5039.5 | |||||||||||
20 | AGARWAL, DINESH | 2803 | 1670.5 | |||||||||||
21 | CHANDRASEKHARAN, RAJEEV | 2876.34 | 2740 | |||||||||||
22 | CHANG, SOK WU W | 40 | 40 | |||||||||||
23 | ZAVAR, MASTANEH | 228 | NA | |||||||||||
24 | WHITE, CHRIS L | 902.09 | 589 | |||||||||||
25 | (blank) | 52 | NA | |||||||||||
26 | GURUMURTHY, VIVEK | 24709.61 | 20295 | |||||||||||
27 | BASU, SANJAY | 838.25 | 780.58 | |||||||||||
28 | BELIHOMJI, ADIL | 12993.44 | 12266.5 | |||||||||||
29 | JAIN, ARCHANA | 8242.42 | 5193.17 | |||||||||||
30 | SUDHARSAN, VELAMUR S | 428.5 | 450.5 | |||||||||||
31 | NIRANJANI, HIMANSHU | 2207 | 1604.25 | |||||||||||
32 | (blank) | NA | NA | |||||||||||
33 | MADERA, ISAAC A | 5674.68 | 3484.94 | |||||||||||
34 | BAESSLER, CHRISTINA | 2199.68 | 1883.94 | |||||||||||
35 | CASO, ANDREW T | 340 | 40 | |||||||||||
36 | GREGORY, LISA M | 290 | 734 | |||||||||||
37 | JOBERT, SEBASTIEN | 1363 | 170 | |||||||||||
38 | REPER, LAURA L | 716 | 64 | |||||||||||
39 | PAONE, KELLY M | 216 | 421 | |||||||||||
40 | KERCHER, TODD E | 294 | 40 | |||||||||||
41 | VENKATRAMAN, SRINIVAS | NA | NA | |||||||||||
42 | (blank) | 256 | 132 | |||||||||||
43 | MUSE, ERIC V | 120 | 0 | |||||||||||
44 | BOWEN, TROY L | 120 | NA | |||||||||||
45 | PETTIT, STEPHEN | NA | NA | |||||||||||
46 | SANKARANARAYANAN, RAMESH | NA | NA | |||||||||||
47 | TOTH, RICHARD A | NA | NA | |||||||||||
48 | (blank) | NA | NA | |||||||||||
49 | RAMANATHAN, SANKARAN | 3078.67 | 1902.16 | |||||||||||
50 | DAMIANO, NATALIE M | 583.17 | NA | |||||||||||
51 | MYLAVARUPU, VENKAT S | 1562 | ||||||||||||
52 | RAY, ANDREW L | 813.5 | 602.66 | |||||||||||
53 | KUSHWAHA, ABHITABH | NA | NA | |||||||||||
54 | JOSHI, ANIRUDHA A | 1139.5 | ||||||||||||
55 | (blank) | 120 | 160 | |||||||||||
56 | SINGH, SUMIT | 5155.4 | 1762.33 | |||||||||||
57 | FUJINAMI, GARY G | 552 | 174 | |||||||||||
58 | KRIER, RYAN | 394.4 | 120 | |||||||||||
59 | PAFF, MARK D | 966.5 | 120 | |||||||||||
60 | SCHANEL, BARBARA J | 561 | 32 | |||||||||||
61 | TANUKU, NAGESWARA RAO | 1266.5 | 821 | |||||||||||
62 | KIRKWOOD, SARA M | 397 | NA | |||||||||||
63 | SHARMA, RAJU | NA | NA | |||||||||||
64 | (blank) | 1018 | 495.33 | |||||||||||
65 | SLY, DAVID G | 5230.75 | 1414.73 | |||||||||||
66 | BARNAK, ROBERT W | 836 | 44 | |||||||||||
67 | BILLINGER-JONES, ANTOINETTE M | 1054.5 | 40 | |||||||||||
68 | FONTANA, OTTAVIO S | 431 | 787 | |||||||||||
69 | HAVEWALA, ASPI | 1001.5 | 120 | |||||||||||
70 | MATEO, ALFRED A | 1711.25 | 383.73 | |||||||||||
71 | (blank) | 196.5 | 40 | |||||||||||
72 | ZIAEE, KAMRAN | 6,160.42 | 5,639.83 | |||||||||||
73 | CHAKRAVARTY, SHOMA | 422 | 340 | |||||||||||
74 | KUMAR, NANDA | 2905 | 3259.5 | |||||||||||
75 | MONDRY, MARC W | NA | NA | |||||||||||
76 | PASTOR, RICHARD | 1258.42 | 252.83 | |||||||||||
77 | SEKAR, KALYANI | 618.5 | 672.5 | |||||||||||
78 | (blank) | 956.5 | 1115 | |||||||||||
79 | SIVAGANESH, SIVAGNANALINGAM | 610 | 365 | |||||||||||
80 | JOSHI, ANIRUDHA A | 445 | ||||||||||||
81 | KAUL, ASHUMA S | 125 | 205 | |||||||||||
82 | SHARMA, RAJU | 40 | NA | |||||||||||
83 | THAKER, DHAVAL V | 120 | ||||||||||||
84 | MYLAVARUPU, VENKAT S | 40 | ||||||||||||
85 | (blank) | NA | NA | |||||||||||
86 | Grand Total | 72343.29 | 46601.99 | |||||||||||
View 1 Week on Week Trend - Un |
below are the steps that needs to be done.
1. code has to as user for a date for which he needs data (In this case let us say 10/24/2020)
2. now it has to pull the values from pivot based on the date user provided and out put should be placed in the output sheet (it has to enter the values in first empty colum - in this case that is column "L"). Data needs to be pulled for both Senior manager and manager.
3. before pulling the data from pivot table code has to check if there are changes in terms of senior managers or managers with the output sheet. if there are any removal we can ignore but if there is a addition of manager under a senior manager then a new row needs to included under that particular senior manager in the output sheet and newly added manager name to be added in "B' Column of newly added row and his data needs to be pulled from pivot.
4. let us say we have a case where new senior manager is added then it has to add a row and respective name has to be entered in to "A" column of newly added row and data needs to be pulled from pivot.