JenniferMurphy
Well-known Member
- Joined
- Jul 23, 2011
- Messages
- 2,707
- Office Version
- 365
- Platform
- Windows
Is there a simple formula for calculating how to distribute a new investment among several funds in a portfolio to bring them all as close into balance as is possible? If all of the funds are more or less in balance, then the job is easy. But if any of them would be over-valued even if none of the new funds are invested in that fund, then the task becomes more complicated.
Consider this scenario:
[TABLE="class: grid, width: 632"]
<tbody>[TR]
[TD]2[/TD]
[TD="align: right"]New Investment [/TD]
[TD="align: center"]$1,000[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD]C/R[/TD]
[TD="align: center"]C[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"]E[/TD]
[TD="align: center"]F[/TD]
[TD="align: center"]G[/TD]
[TD="align: center"]H[/TD]
[TD="align: center"]I[/TD]
[/TR]
[TR]
[TD]4[/TD]
[TD="align: right"]Funds
[/TD]
[TD="align: right"]Fund A
[/TD]
[TD="align: right"]Fund B
[/TD]
[TD="align: right"]Fund C
[/TD]
[TD="align: right"]Fund D
[/TD]
[TD="align: right"]Sum
[/TD]
[TD="align: center"]Formulas[/TD]
[/TR]
[TR]
[TD]5[/TD]
[TD="align: right"]Target %[/TD]
[TD="align: right"]10%[/TD]
[TD="align: right"]20%[/TD]
[TD="align: right"]30%[/TD]
[TD="align: right"]40%[/TD]
[TD="align: right"]100%[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]6[/TD]
[TD="align: right"]Current Balance[/TD]
[TD="align: right"]$700[/TD]
[TD="align: right"]$2,000[/TD]
[TD="align: right"]$2,800[/TD]
[TD="align: right"]$4,500[/TD]
[TD="align: right"]$10,000[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]7[/TD]
[TD="align: right"]Target Current Balance[/TD]
[TD="align: right"]$1,000[/TD]
[TD="align: right"]$2,000[/TD]
[TD="align: right"]$3,000[/TD]
[TD="align: right"]$4,000[/TD]
[TD="align: right"]$10,000[/TD]
[TD]=BalanceBegTotal*PCTgt[/TD]
[/TR]
[TR]
[TD]8[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]-$300[/TD]
[TD="align: right"]$0[/TD]
[TD="align: right"]-$200[/TD]
[TD="align: right"]+$500[/TD]
[TD="align: right"]$0[/TD]
[TD]=BalOld-BalOldTgt[/TD]
[/TR]
[TR]
[TD]9[/TD]
[TD="align: right"]Current %s[/TD]
[TD="align: right"]7.0%[/TD]
[TD="align: right"]20.0%[/TD]
[TD="align: right"]28.0%[/TD]
[TD="align: right"]45.0%[/TD]
[TD="align: right"]100%[/TD]
[TD]=BalOld/BalanceBegTotal[/TD]
[/TR]
[TR]
[TD]10[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]-3.00%[/TD]
[TD="align: right"]0.00%[/TD]
[TD="align: right"]-2.00%[/TD]
[TD="align: right"]+5.00%[/TD]
[TD="align: right"]0%[/TD]
[TD]=PCOld-PCTgt[/TD]
[/TR]
[TR]
[TD]11[/TD]
[TD="align: right"]Current % New Balance[/TD]
[TD="align: right"]6.4%[/TD]
[TD="align: right"]18.2%[/TD]
[TD="align: right"]25.5%[/TD]
[TD="align: right"]40.9%[/TD]
[TD="align: right"]91%[/TD]
[TD]=BalOld/BalNewTot[/TD]
[/TR]
[TR]
[TD]12[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]-3.64%[/TD]
[TD="align: right"]-1.82%[/TD]
[TD="align: right"]-4.55%[/TD]
[TD="align: right"]+0.91%[/TD]
[TD="align: right"]-9%[/TD]
[TD]=BalOldBalNewPC-PCTgt[/TD]
[/TR]
[TR]
[TD]13[/TD]
[TD="align: right"]Target New Balance[/TD]
[TD="align: right"]$1,100[/TD]
[TD="align: right"]$2,200[/TD]
[TD="align: right"]$3,300[/TD]
[TD="align: right"]$4,400[/TD]
[TD="align: right"]$11,000[/TD]
[TD]=BalNewTotTgt*PCTgt[/TD]
[/TR]
[TR]
[TD]14[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]$400[/TD]
[TD="align: right"]$200[/TD]
[TD="align: right"]$500[/TD]
[TD="align: right"]-$100[/TD]
[TD="align: right"]$1,000[/TD]
[TD]=BalNewTgt-BalOld[/TD]
[/TR]
[TR]
[TD]15[/TD]
[TD="align: right"]Investment[/TD]
[TD="align: right"]$384[/TD]
[TD="align: right"]$167[/TD]
[TD="align: right"]$449[/TD]
[TD="align: right"]$0[/TD]
[TD="align: right"]$1,000[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]16[/TD]
[TD="align: right"]New Balance[/TD]
[TD="align: right"]$1,084[/TD]
[TD="align: right"]$2,167[/TD]
[TD="align: right"]$3,249[/TD]
[TD="align: right"]$4,500[/TD]
[TD="align: right"]$11,000[/TD]
[TD]=BalOld+InvestmentEach[/TD]
[/TR]
[TR]
[TD]17[/TD]
[TD="align: right"]New %s[/TD]
[TD="align: right"]9.9%[/TD]
[TD="align: right"]19.7%[/TD]
[TD="align: right"]29.5%[/TD]
[TD="align: right"]40.9%[/TD]
[TD="align: right"]100%[/TD]
[TD]=BalNew/BalNewTot[/TD]
[/TR]
[TR]
[TD]18[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]98.5%[/TD]
[TD="align: right"]98.5%[/TD]
[TD="align: right"]98.5%[/TD]
[TD="align: right"]102.3%[/TD]
[TD="align: right"]100.0%[/TD]
[TD]=PCNew/PCTgt[/TD]
[/TR]
</tbody>[/TABLE]
I own 4 funds (A, B, C, & D) and my target allocation for them is 10%, 20%, 30%, & 40%. I have $1,000 to invest. I see that the funds are slightly out of balance. Fund A is down $300 (D8) or 3% (D9). Fund B is right on target. Fund C is down $200 or 2%. And Fund D is up $500 or 5%.
In Row 11, I calculate the % the current balances are of the new total balance and in Row 12 the difference. I see that Fund D will be over valued even after the new total investment balance of %1,100 (G11 & G12). So, clearly, I don't want to put any more money into that fund. But how to I allocate the $1,000 among the other 3 funds to bring them as close to being in balance as possible?
I ended up using a trial and error method to arrive at the investment allocations in Row 15. I fiddled around with the numbers until the % differences (Row 18) were equal.
A couple of questions:
Thanks
Consider this scenario:
[TABLE="class: grid, width: 632"]
<tbody>[TR]
[TD]2[/TD]
[TD="align: right"]New Investment [/TD]
[TD="align: center"]$1,000[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD]C/R[/TD]
[TD="align: center"]C[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"]E[/TD]
[TD="align: center"]F[/TD]
[TD="align: center"]G[/TD]
[TD="align: center"]H[/TD]
[TD="align: center"]I[/TD]
[/TR]
[TR]
[TD]4[/TD]
[TD="align: right"]Funds
[/TD]
[TD="align: right"]Fund A
[/TD]
[TD="align: right"]Fund B
[/TD]
[TD="align: right"]Fund C
[/TD]
[TD="align: right"]Fund D
[/TD]
[TD="align: right"]Sum
[/TD]
[TD="align: center"]Formulas[/TD]
[/TR]
[TR]
[TD]5[/TD]
[TD="align: right"]Target %[/TD]
[TD="align: right"]10%[/TD]
[TD="align: right"]20%[/TD]
[TD="align: right"]30%[/TD]
[TD="align: right"]40%[/TD]
[TD="align: right"]100%[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]6[/TD]
[TD="align: right"]Current Balance[/TD]
[TD="align: right"]$700[/TD]
[TD="align: right"]$2,000[/TD]
[TD="align: right"]$2,800[/TD]
[TD="align: right"]$4,500[/TD]
[TD="align: right"]$10,000[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]7[/TD]
[TD="align: right"]Target Current Balance[/TD]
[TD="align: right"]$1,000[/TD]
[TD="align: right"]$2,000[/TD]
[TD="align: right"]$3,000[/TD]
[TD="align: right"]$4,000[/TD]
[TD="align: right"]$10,000[/TD]
[TD]=BalanceBegTotal*PCTgt[/TD]
[/TR]
[TR]
[TD]8[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]-$300[/TD]
[TD="align: right"]$0[/TD]
[TD="align: right"]-$200[/TD]
[TD="align: right"]+$500[/TD]
[TD="align: right"]$0[/TD]
[TD]=BalOld-BalOldTgt[/TD]
[/TR]
[TR]
[TD]9[/TD]
[TD="align: right"]Current %s[/TD]
[TD="align: right"]7.0%[/TD]
[TD="align: right"]20.0%[/TD]
[TD="align: right"]28.0%[/TD]
[TD="align: right"]45.0%[/TD]
[TD="align: right"]100%[/TD]
[TD]=BalOld/BalanceBegTotal[/TD]
[/TR]
[TR]
[TD]10[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]-3.00%[/TD]
[TD="align: right"]0.00%[/TD]
[TD="align: right"]-2.00%[/TD]
[TD="align: right"]+5.00%[/TD]
[TD="align: right"]0%[/TD]
[TD]=PCOld-PCTgt[/TD]
[/TR]
[TR]
[TD]11[/TD]
[TD="align: right"]Current % New Balance[/TD]
[TD="align: right"]6.4%[/TD]
[TD="align: right"]18.2%[/TD]
[TD="align: right"]25.5%[/TD]
[TD="align: right"]40.9%[/TD]
[TD="align: right"]91%[/TD]
[TD]=BalOld/BalNewTot[/TD]
[/TR]
[TR]
[TD]12[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]-3.64%[/TD]
[TD="align: right"]-1.82%[/TD]
[TD="align: right"]-4.55%[/TD]
[TD="align: right"]+0.91%[/TD]
[TD="align: right"]-9%[/TD]
[TD]=BalOldBalNewPC-PCTgt[/TD]
[/TR]
[TR]
[TD]13[/TD]
[TD="align: right"]Target New Balance[/TD]
[TD="align: right"]$1,100[/TD]
[TD="align: right"]$2,200[/TD]
[TD="align: right"]$3,300[/TD]
[TD="align: right"]$4,400[/TD]
[TD="align: right"]$11,000[/TD]
[TD]=BalNewTotTgt*PCTgt[/TD]
[/TR]
[TR]
[TD]14[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]$400[/TD]
[TD="align: right"]$200[/TD]
[TD="align: right"]$500[/TD]
[TD="align: right"]-$100[/TD]
[TD="align: right"]$1,000[/TD]
[TD]=BalNewTgt-BalOld[/TD]
[/TR]
[TR]
[TD]15[/TD]
[TD="align: right"]Investment[/TD]
[TD="align: right"]$384[/TD]
[TD="align: right"]$167[/TD]
[TD="align: right"]$449[/TD]
[TD="align: right"]$0[/TD]
[TD="align: right"]$1,000[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]16[/TD]
[TD="align: right"]New Balance[/TD]
[TD="align: right"]$1,084[/TD]
[TD="align: right"]$2,167[/TD]
[TD="align: right"]$3,249[/TD]
[TD="align: right"]$4,500[/TD]
[TD="align: right"]$11,000[/TD]
[TD]=BalOld+InvestmentEach[/TD]
[/TR]
[TR]
[TD]17[/TD]
[TD="align: right"]New %s[/TD]
[TD="align: right"]9.9%[/TD]
[TD="align: right"]19.7%[/TD]
[TD="align: right"]29.5%[/TD]
[TD="align: right"]40.9%[/TD]
[TD="align: right"]100%[/TD]
[TD]=BalNew/BalNewTot[/TD]
[/TR]
[TR]
[TD]18[/TD]
[TD="align: right"]Difference[/TD]
[TD="align: right"]98.5%[/TD]
[TD="align: right"]98.5%[/TD]
[TD="align: right"]98.5%[/TD]
[TD="align: right"]102.3%[/TD]
[TD="align: right"]100.0%[/TD]
[TD]=PCNew/PCTgt[/TD]
[/TR]
</tbody>[/TABLE]
I own 4 funds (A, B, C, & D) and my target allocation for them is 10%, 20%, 30%, & 40%. I have $1,000 to invest. I see that the funds are slightly out of balance. Fund A is down $300 (D8) or 3% (D9). Fund B is right on target. Fund C is down $200 or 2%. And Fund D is up $500 or 5%.
In Row 11, I calculate the % the current balances are of the new total balance and in Row 12 the difference. I see that Fund D will be over valued even after the new total investment balance of %1,100 (G11 & G12). So, clearly, I don't want to put any more money into that fund. But how to I allocate the $1,000 among the other 3 funds to bring them as close to being in balance as possible?
I ended up using a trial and error method to arrive at the investment allocations in Row 15. I fiddled around with the numbers until the % differences (Row 18) were equal.
A couple of questions:
- Is this allocation the most balanced?
- Is there a closed form formula for calculating each one without trial and error or iterations?
Thanks