The table entries can be calculated directly, as demonstrated below. See the notes following the tables.
[TABLE="class: grid, width: 400"]
<tbody>[TR]
[TH][/TH]
[TH]B
[/TH]
[TH]C
[/TH]
[TH]D
[/TH]
[TH]E
[/TH]
[/TR]
[TR]
[TD="align: center"]6
[/TD]
[TD="align: center"]OPTION ONE
[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD="align: center"]7
[/TD]
[TD]Loan amt
[/TD]
[TD="align: right"]100,000.00
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]8
[/TD]
[TD]Loan fees
[/TD]
[TD="align: right"]1,000.00
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]9
[/TD]
[TD]Term (yrs)
[/TD]
[TD="align: right"]15
[/TD]
[TD="align: right"]180
[/TD]
[TD]mos
[/TD]
[/TR]
[TR]
[TD="align: center"]10
[/TD]
[TD]Init int rate (annl)
[/TD]
[TD="align: right"]4.00%
[/TD]
[TD="align: right"]0.3333%
[/TD]
[TD]per mo
[/TD]
[/TR]
[TR]
[TD="align: center"]11
[/TD]
[TD]Init term (mos)
[/TD]
[TD="align: right"]12
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]12
[/TD]
[TD]Pmt (per mo)
[/TD]
[TD="align: right"]739.69
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]13
[/TD]
[TD]Init term end bal
[/TD]
[TD="align: right"]95,033.35
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]14
[/TD]
[TD]APR
[/TD]
[TD="align: right"]4.15%
[/TD]
[TD="align: right"]0.3457%
[/TD]
[TD]per mo
[/TD]
[/TR]
[TR]
[TD="align: center"]15
[/TD]
[TD="align: center"]OPTION TWO
[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD="align: center"]16
[/TD]
[TD]Loan amt
[/TD]
[TD="align: right"]100,000.00
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]17
[/TD]
[TD]Loan fees
[/TD]
[TD="align: right"]2,000.00
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]18
[/TD]
[TD]Term (yrs)
[/TD]
[TD="align: right"]15
[/TD]
[TD="align: right"]180
[/TD]
[TD]mos
[/TD]
[/TR]
[TR]
[TD="align: center"]19
[/TD]
[TD]Init int rate (annl)
[/TD]
[TD="align: right"]3.50%
[/TD]
[TD="align: right"]0.2917%
[/TD]
[TD]per mo
[/TD]
[/TR]
[TR]
[TD="align: center"]20
[/TD]
[TD]Init term (mos)
[/TD]
[TD="align: right"]12
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]21
[/TD]
[TD]Pmt (per mo)
[/TD]
[TD="align: right"]714.88
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]22
[/TD]
[TD]Init term end bal
[/TD]
[TD="align: right"]94,839.14
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]23
[/TD]
[TD]APR
[/TD]
[TD="align: right"]3.80%
[/TD]
[TD="align: right"]0.3163%
[/TD]
[TD]per mo
[/TD]
[/TR]
[TR]
[TD="align: center"]24
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]25
[/TD]
[TD]Init term cost, opt 1
[/TD]
[TD="align: right"]4,909.60
[/TD]
[TD="align: right"]3,909.60
[/TD]
[TD]int
[/TD]
[/TR]
[TR]
[TD="align: center"]26
[/TD]
[TD]Init term cost, opt 2
[/TD]
[TD="align: right"]5,417.73
[/TD]
[TD="align: right"]3,417.73
[/TD]
[TD]int
[/TD]
[/TR]
[TR]
[TD="align: center"]27
[/TD]
[TD]Diff, opt 1
[/TD]
[TD="align: right"]-508.13
[/TD]
[TD="align: right"]491.87
[/TD]
[TD]int
[/TD]
[/TR]
[TR]
[TD="align: center"]28
[/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[TD="align: right"][/TD]
[/TR]
[TR]
[TD="align: center"]29
[/TD]
[TD]Total cost, opt 1
[/TD]
[TD="align: right"]34,143.83
[/TD]
[TD="align: right"]33,143.83
[/TD]
[TD]int
[/TD]
[/TR]
[TR]
[TD="align: center"]30
[/TD]
[TD]Total cost, opt 2
[/TD]
[TD="align: right"]30,678.86
[/TD]
[TD="align: right"]28,678.86
[/TD]
[TD]int
[/TD]
[/TR]
[TR]
[TD="align: center"]31
[/TD]
[TD]Diff, opt 1
[/TD]
[TD="align: right"]3,464.97
[/TD]
[TD="align: right"]4,464.97
[/TD]
[TD]int
[/TD]
[/TR]
</tbody>[/TABLE]
Formulas[TABLE="class: grid, width: 400"]
<tbody>[TR]
[TH="width: 10"]Cell
[/TH]
[TH="align: left"]Formula
[/TH]
[/TR]
[TR]
[TH="width: 10"]D9
[/TH]
[TD="align: left"]=C9*12
[/TD]
[/TR]
[TR]
[TH="width: 10"]D10
[/TH]
[TD="align: left"]=C10/12
[/TD]
[/TR]
[TR]
[TH="width: 10"]C12
[/TH]
[TD="align: left"]=IFERROR(PMT(D10,D9,-C7),0)
[/TD]
[/TR]
[TR]
[TH="width: 10"]C13
[/TH]
[TD="align: left"]=FV(D10,C11,C12,-C7)
[/TD]
[/TR]
[TR]
[TH="width: 10"]C14
[/TH]
[TD="align: left"]=12*D14
[/TD]
[/TR]
[TR]
[TH="width: 10"]D14
[/TH]
[TD="align: left"]=IFERROR(RATE(D9,C12,-C7+C8),0)
[/TD]
[/TR]
[TR]
[TH="width: 10"]D18
[/TH]
[TD="align: left"]=D9
[/TD]
[/TR]
[TR]
[TH="width: 10"]D19
[/TH]
[TD="align: left"]=C19/12
[/TD]
[/TR]
[TR]
[TH="width: 10"]C21
[/TH]
[TD="align: left"]=IFERROR(PMT(D19,D18,-C16),0)
[/TD]
[/TR]
[TR]
[TH="width: 10"]C22
[/TH]
[TD="align: left"]=FV(D19,C20,C21,-C16)
[/TD]
[/TR]
[TR]
[TH="width: 10"]C23
[/TH]
[TD="align: left"]=12*D23
[/TD]
[/TR]
[TR]
[TH="width: 10"]D23
[/TH]
[TD="align: left"]=IFERROR(RATE(D18,C21,-C16+C17),0)
[/TD]
[/TR]
[TR]
[TH="width: 10"]C25
[/TH]
[TD="align: left"]=C12*C11-(C7-C13)+C8
[/TD]
[/TR]
[TR]
[TH="width: 10"]D25
[/TH]
[TD="align: left"]=C25-C8
[/TD]
[/TR]
[TR]
[TH="width: 10"]C26
[/TH]
[TD="align: left"]=C21*C20-(C16-C22)+C17
[/TD]
[/TR]
[TR]
[TH="width: 10"]D26
[/TH]
[TD="align: left"]=C26-C17
[/TD]
[/TR]
[TR]
[TH="width: 10"]C27
[/TH]
[TD="align: left"]=C25-C26
[/TD]
[/TR]
[TR]
[TH="width: 10"]D27
[/TH]
[TD="align: left"]=D25-D26
[/TD]
[/TR]
[TR]
[TH="width: 10"]C29
[/TH]
[TD="align: left"]=C12*D9-C7+C8
[/TD]
[/TR]
[TR]
[TH="width: 10"]D29
[/TH]
[TD="align: left"]=C29-C8
[/TD]
[/TR]
[TR]
[TH="width: 10"]C30
[/TH]
[TD="align: left"]=C21*D18-C16+C17
[/TD]
[/TR]
[TR]
[TH="width: 10"]D30
[/TH]
[TD="align: left"]=C30-C17
[/TD]
[/TR]
[TR]
[TH="width: 10"]C31
[/TH]
[TD="align: left"]=C29-C30
[/TD]
[/TR]
[TR]
[TH="width: 10"]D31
[/TH]
[TD="align: left"]=D29-D30
[/TD]
[/TR]
</tbody>[/TABLE]
Notes
------
1. Monthly mortgage interest rates in D10 and D19 are based on US rules. Many other countries follow the same rule, notably AU and NZ. But some countries specify a compounded annual rate, notably many EU countries. In those cases, the monthly interest rate in D10 would be (1+C10)^(1/12)-1. And Canada specifies an annual rate that is compounded monthly semi-annually(!). In that case, the monthly interest rate in D10 would be (1+C10/2)^(1/6)-1.
Likewise, the APR in C14 is 12*D14, (1+D14)^12-1, or ((1+D14)^6-1)*2 respectively. Similarly for C23. I added the APR because that is how many people compare loans.
2. PMT and APR are based on the full loan term, not the initial interest rate term. For subsequent interest rate terms, we would use the beginning outstanding balance and the length of the remaining full loan term.
3. For the initial term costs, column C includes the up-front loan fees (B8 and B17). Column D is the interest only.
Similarly for the total costs. I added the total costs because it is dubious to compare only the initial term costs, as demonstrated by the example. Although option 1 is less costly for the initial term, it is more costly for the full loan term, if we assume the initial interest rate for the full loan term.
4. In reality, we would round PMT at least to 2 decimal places, since it is real currency. However, the rounding procedure varies according to the lender. Moreover, rounding PMT results in an irregular final payment, which complicates the calculation of total costs.