Hi
This formula, generates a value a point on a S-curve (B13 at this point =1, the first period)
It is possible to modify it so that it accepts a starting value (5% in the example below), rather than distributing the values in the example here:
(The maths are explained here, but I'm unable to make contact with the originator)
This formula, generates a value a point on a S-curve (B13 at this point =1, the first period)
Excel Formula:
=Peak_value/(1+EXP(-((LN(1/pc_Peak_at_Hypergrowth_start-1)-LN(1/pc_Peak_at_Hypergrowth_end-1))/(Hypergrowth_end-Hypergrowth_start))*
(B13-(LN(1/pc_Peak_at_Hypergrowth_start-1)/((LN(1/pc_Peak_at_Hypergrowth_start-1)-
LN(1/pc_Peak_at_Hypergrowth_end-1))/(Hypergrowth_end-Hypergrowth_start))+Hypergrowth_start))))
It is possible to modify it so that it accepts a starting value (5% in the example below), rather than distributing the values in the example here:
S-Curve modified.xlsx | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | |||
1 | Starting percentage | 5% | |||||||||||||||||||||
2 | Peak | 100% | |||||||||||||||||||||
3 | Hypergrowth starts ~ period | 6 | |||||||||||||||||||||
4 | % of Peak at Hypergrowth start | 25% | |||||||||||||||||||||
5 | Hypergrowth ends ~ period | 10 | |||||||||||||||||||||
6 | % of Peak at Hypergrowth end point | 70% | |||||||||||||||||||||
7 | |||||||||||||||||||||||
8 | |||||||||||||||||||||||
9 | |||||||||||||||||||||||
10 | |||||||||||||||||||||||
11 | |||||||||||||||||||||||
12 | |||||||||||||||||||||||
13 | Period: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
14 | Value at point on curve with existing formula: | 2.8% | 4.5% | 7.2% | 11.2% | 17.0% | 25.0% | 35.2% | 46.9% | 58.9% | 70.0% | 79.1% | 86.1% | 90.9% | 94.2% | 96.4% | 97.7% | 98.6% | 99.1% | 99.5% | 99.7% | ||
15 | Desired value with modified formula: | 5.0% | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ||
Sheet1 |
Cell Formulas | ||
---|---|---|
Range | Formula | |
B14:U14 | C14 | =Peak_value/(1+EXP(-(( LN(1/pc_Peak_at_Hypergrowth_start-1)- LN(1/pc_Peak_at_Hypergrowth_end-1))/(Hypergrowth_end-Hypergrowth_start))* (C13-( LN(1/pc_Peak_at_Hypergrowth_start-1)/(( LN(1/pc_Peak_at_Hypergrowth_start-1)- LN(1/pc_Peak_at_Hypergrowth_end-1))/(Hypergrowth_end-Hypergrowth_start))+Hypergrowth_start)))) |
B13:U13 | B13 | =SEQUENCE(1,20) |
B15 | B15 | =Start_value |
Dynamic array formulas. |
Named Ranges | ||
---|---|---|
Name | Refers To | Cells |
Hypergrowth_end | =Sheet1!$B$5 | B14:U14 |
Hypergrowth_start | =Sheet1!$B$3 | B14:U14 |
pc_Peak_at_Hypergrowth_end | =Sheet1!$B$6 | B14:U14 |
pc_Peak_at_Hypergrowth_start | =Sheet1!$B$4 | B14:U14 |
Peak_value | =Sheet1!$B$2 | B14:U14 |
Start_value | =Sheet1!$B$1 | B15 |
(The maths are explained here, but I'm unable to make contact with the originator)