Hellsteeth
New Member
- Joined
- Dec 5, 2018
- Messages
- 5
Hello,
I have a data set with over 60,000 lines of data per year. It contains the date and time an object was placed in a specific container and for how long it was in the container.
The more objects that were simultaneously together in the container the greater the weight and loading on the system.
I want to calculate the loading on each container to see what date and times the maximum loading occurred.
I have been trying to use both pivot tables or sumproduct along the lines of other posts in this forum such as =SUMPRODUCT(--($B$1:$B$60000<=B1),--($C$1:$C$60000>=B1)) I am however having difficulty adapting it to take into account the containers and dates.
Here is a sample of the data with some expected outcomes in the last two columns.
<colgroup><col style="width: 25pxpx"><col><col><col><col><col><col><col></colgroup><thead>
</thead><tbody>
[TD="align: center"]1[/TD]
[TD="align: center"]2[/TD]
[TD="align: right"]9:15 [/TD]
[TD="align: right"]11:20 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]3[/TD]
[TD="align: right"]16:30 [/TD]
[TD="align: right"]19:25 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]4[/TD]
[TD="align: right"]14:00 [/TD]
[TD="align: right"]18:10 [/TD]
[TD="align: right"]4[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]5[/TD]
[TD="align: right"]16:40 [/TD]
[TD="align: right"]17:15 [/TD]
[TD="align: right"]10[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]30[/TD]
[TD="align: center"]6[/TD]
[TD="align: right"]16:45 [/TD]
[TD="align: right"]18:00 [/TD]
[TD="align: right"]10[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]30[/TD]
[TD="align: center"]7[/TD]
[TD="align: right"]18:05 [/TD]
[TD="align: right"]18:20 [/TD]
[TD="align: right"]10[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]8[/TD]
[TD="align: right"]17:50 [/TD]
[TD="align: right"]20:30 [/TD]
[TD="align: right"]8[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]9[/TD]
[TD="align: right"]15:45 [/TD]
[TD="align: right"]17:55 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]10[/TD]
[TD="align: center"]10[/TD]
[TD="align: right"]17:45 [/TD]
[TD="align: right"]20:00 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]25[/TD]
[TD="align: center"]11[/TD]
[TD="align: right"]19:45 [/TD]
[TD="align: right"]21:55 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]15[/TD]
</tbody>
I have a data set with over 60,000 lines of data per year. It contains the date and time an object was placed in a specific container and for how long it was in the container.
The more objects that were simultaneously together in the container the greater the weight and loading on the system.
I want to calculate the loading on each container to see what date and times the maximum loading occurred.
I have been trying to use both pivot tables or sumproduct along the lines of other posts in this forum such as =SUMPRODUCT(--($B$1:$B$60000<=B1),--($C$1:$C$60000>=B1)) I am however having difficulty adapting it to take into account the containers and dates.
Here is a sample of the data with some expected outcomes in the last two columns.
A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|
Start Date | Start Time | End Date | End Time | Container | Simultaneous | Overlap (mins) | |
01/01/2017 | 01/01/2017 | ||||||
01/01/2017 | 01/01/2017 | ||||||
01/01/2017 | 01/01/2017 | ||||||
01/01/2017 | 01/01/2017 | ||||||
01/01/2017 | 01/01/2017 | ||||||
01/01/2017 | 01/01/2017 | ||||||
01/01/2017 | 01/01/2017 | ||||||
02/01/2017 | 02/01/2017 | ||||||
02/01/2017 | 02/01/2017 | ||||||
02/01/2017 | 02/01/2017 |
<colgroup><col style="width: 25pxpx"><col><col><col><col><col><col><col></colgroup><thead>
</thead><tbody>
[TD="align: center"]1[/TD]
[TD="align: center"]2[/TD]
[TD="align: right"]9:15 [/TD]
[TD="align: right"]11:20 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]3[/TD]
[TD="align: right"]16:30 [/TD]
[TD="align: right"]19:25 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]4[/TD]
[TD="align: right"]14:00 [/TD]
[TD="align: right"]18:10 [/TD]
[TD="align: right"]4[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]5[/TD]
[TD="align: right"]16:40 [/TD]
[TD="align: right"]17:15 [/TD]
[TD="align: right"]10[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]30[/TD]
[TD="align: center"]6[/TD]
[TD="align: right"]16:45 [/TD]
[TD="align: right"]18:00 [/TD]
[TD="align: right"]10[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]30[/TD]
[TD="align: center"]7[/TD]
[TD="align: right"]18:05 [/TD]
[TD="align: right"]18:20 [/TD]
[TD="align: right"]10[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]8[/TD]
[TD="align: right"]17:50 [/TD]
[TD="align: right"]20:30 [/TD]
[TD="align: right"]8[/TD]
[TD="align: right"]0[/TD]
[TD="align: right"]0[/TD]
[TD="align: center"]9[/TD]
[TD="align: right"]15:45 [/TD]
[TD="align: right"]17:55 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]10[/TD]
[TD="align: center"]10[/TD]
[TD="align: right"]17:45 [/TD]
[TD="align: right"]20:00 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]25[/TD]
[TD="align: center"]11[/TD]
[TD="align: right"]19:45 [/TD]
[TD="align: right"]21:55 [/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]2[/TD]
[TD="align: right"]15[/TD]
</tbody>
Sheet2
Any guidance or ideas will be kindly received.