I want to calculate the attrition rate in the following data set
[TABLE="width: 503"]
<colgroup><col span="2"><col><col><col></colgroup><tbody>[TR]
[TD]effective_date[/TD]
[TD]hire_date[/TD]
[TD]UNIQUE_ID[/TD]
[TD]emp_id[/TD]
[TD]full_name[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]29-11-10[/TD]
[TD]703621Peter Jones[/TD]
[TD="align: right"]703621[/TD]
[TD]Peter Jones[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]29-11-10[/TD]
[TD]703621Peter Jones[/TD]
[TD="align: right"]703621[/TD]
[TD]Peter Jones[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]29-11-10[/TD]
[TD]703621Peter Jones[/TD]
[TD="align: right"]703621[/TD]
[TD]Peter Jones[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]13-06-11[/TD]
[TD]703778Shannon James[/TD]
[TD="align: right"]703778[/TD]
[TD]Shannon James[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]13-06-11[/TD]
[TD]703778Shannon James[/TD]
[TD="align: right"]703778[/TD]
[TD]Shannon James[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]13-06-11[/TD]
[TD]703778Shannon James[/TD]
[TD="align: right"]703778[/TD]
[TD]Shannon James[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]14-03-11[/TD]
[TD]704287John App[/TD]
[TD="align: right"]704287[/TD]
[TD]John App[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]14-03-11[/TD]
[TD]704287John App[/TD]
[TD="align: right"]704287[/TD]
[TD]John App[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]14-03-11[/TD]
[TD]704287John App[/TD]
[TD="align: right"]704287[/TD]
[TD]John App[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]05-07-11[/TD]
[TD]705704Lauren Tale[/TD]
[TD="align: right"]705704[/TD]
[TD]Lauren Tale[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]05-07-11[/TD]
[TD]705704Lauren Tale[/TD]
[TD="align: right"]705704[/TD]
[TD]Lauren Tale[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]05-07-11[/TD]
[TD]705704Lauren Tale[/TD]
[TD="align: right"]705704[/TD]
[TD]Lauren Tale[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]06-09-11[/TD]
[TD]706291Rav Deep[/TD]
[TD="align: right"]706291[/TD]
[TD]Rav Deep[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]06-09-11[/TD]
[TD]706291Rav Deep[/TD]
[TD="align: right"]706291[/TD]
[TD]Rav Deep[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]06-09-11[/TD]
[TD]706291Rav Deep[/TD]
[TD="align: right"]706291[/TD]
[TD]Rav Deep[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]10-03-14[/TD]
[TD]706560Jake Bryan [/TD]
[TD="align: right"]706560[/TD]
[TD]Jake Bryan [/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]05-12-11[/TD]
[TD]707098Dina Moore[/TD]
[TD="align: right"]707098[/TD]
[TD]Dina Moore[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]05-12-11[/TD]
[TD]707098Dina Moore[/TD]
[TD="align: right"]707098[/TD]
[TD]Dina Moore[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]05-12-11[/TD]
[TD]707098Dina Moore[/TD]
[TD="align: right"]707098[/TD]
[TD]Dina Moore[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]30-01-12[/TD]
[TD]707803Shirley Jones[/TD]
[TD="align: right"]707803[/TD]
[TD]Shirley Jones[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]30-01-12[/TD]
[TD]707803Shirley Jones[/TD]
[TD="align: right"]707803[/TD]
[TD]Shirley Jones[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]30-01-12[/TD]
[TD]707803Shirley Jones[/TD]
[TD="align: right"]707803[/TD]
[TD]Shirley Jones[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]04-09-12[/TD]
[TD]708136David Juxy[/TD]
[TD="align: right"]708136[/TD]
[TD]David Juxy[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]04-09-12[/TD]
[TD]708136David Juxy[/TD]
[TD="align: right"]708136[/TD]
[TD]David Juxy[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]04-09-12[/TD]
[TD]708136David Juxy[/TD]
[TD="align: right"]708136[/TD]
[TD]David Juxy[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]26-03-12[/TD]
[TD]708364Jennifer Nolan [/TD]
[TD="align: right"]708364[/TD]
[TD]Jennifer Nolan [/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]26-03-12[/TD]
[TD]708364Jennifer Nolan [/TD]
[TD="align: right"]708364[/TD]
[TD]Jennifer Nolan [/TD]
[/TR]
</tbody>[/TABLE]
As you can see the patter is that there is a record every 3 months, so when an employee is not recorded in the next record (effective date) it means he/she has left the company. So, in my opinion I'd need a new column that would flag or count those employees. For example, the red highlighted employees should be counted to those who left since they are not recorded in next months record.
Can that be done without a VB macro?
[TABLE="width: 503"]
<colgroup><col span="2"><col><col><col></colgroup><tbody>[TR]
[TD]effective_date[/TD]
[TD]hire_date[/TD]
[TD]UNIQUE_ID[/TD]
[TD]emp_id[/TD]
[TD]full_name[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]29-11-10[/TD]
[TD]703621Peter Jones[/TD]
[TD="align: right"]703621[/TD]
[TD]Peter Jones[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]29-11-10[/TD]
[TD]703621Peter Jones[/TD]
[TD="align: right"]703621[/TD]
[TD]Peter Jones[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]29-11-10[/TD]
[TD]703621Peter Jones[/TD]
[TD="align: right"]703621[/TD]
[TD]Peter Jones[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]13-06-11[/TD]
[TD]703778Shannon James[/TD]
[TD="align: right"]703778[/TD]
[TD]Shannon James[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]13-06-11[/TD]
[TD]703778Shannon James[/TD]
[TD="align: right"]703778[/TD]
[TD]Shannon James[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]13-06-11[/TD]
[TD]703778Shannon James[/TD]
[TD="align: right"]703778[/TD]
[TD]Shannon James[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]14-03-11[/TD]
[TD]704287John App[/TD]
[TD="align: right"]704287[/TD]
[TD]John App[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]14-03-11[/TD]
[TD]704287John App[/TD]
[TD="align: right"]704287[/TD]
[TD]John App[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]14-03-11[/TD]
[TD]704287John App[/TD]
[TD="align: right"]704287[/TD]
[TD]John App[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]05-07-11[/TD]
[TD]705704Lauren Tale[/TD]
[TD="align: right"]705704[/TD]
[TD]Lauren Tale[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]05-07-11[/TD]
[TD]705704Lauren Tale[/TD]
[TD="align: right"]705704[/TD]
[TD]Lauren Tale[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]05-07-11[/TD]
[TD]705704Lauren Tale[/TD]
[TD="align: right"]705704[/TD]
[TD]Lauren Tale[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]06-09-11[/TD]
[TD]706291Rav Deep[/TD]
[TD="align: right"]706291[/TD]
[TD]Rav Deep[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]06-09-11[/TD]
[TD]706291Rav Deep[/TD]
[TD="align: right"]706291[/TD]
[TD]Rav Deep[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]06-09-11[/TD]
[TD]706291Rav Deep[/TD]
[TD="align: right"]706291[/TD]
[TD]Rav Deep[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]10-03-14[/TD]
[TD]706560Jake Bryan [/TD]
[TD="align: right"]706560[/TD]
[TD]Jake Bryan [/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]05-12-11[/TD]
[TD]707098Dina Moore[/TD]
[TD="align: right"]707098[/TD]
[TD]Dina Moore[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]05-12-11[/TD]
[TD]707098Dina Moore[/TD]
[TD="align: right"]707098[/TD]
[TD]Dina Moore[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]05-12-11[/TD]
[TD]707098Dina Moore[/TD]
[TD="align: right"]707098[/TD]
[TD]Dina Moore[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]30-01-12[/TD]
[TD]707803Shirley Jones[/TD]
[TD="align: right"]707803[/TD]
[TD]Shirley Jones[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]30-01-12[/TD]
[TD]707803Shirley Jones[/TD]
[TD="align: right"]707803[/TD]
[TD]Shirley Jones[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]30-01-12[/TD]
[TD]707803Shirley Jones[/TD]
[TD="align: right"]707803[/TD]
[TD]Shirley Jones[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]04-09-12[/TD]
[TD]708136David Juxy[/TD]
[TD="align: right"]708136[/TD]
[TD]David Juxy[/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]04-09-12[/TD]
[TD]708136David Juxy[/TD]
[TD="align: right"]708136[/TD]
[TD]David Juxy[/TD]
[/TR]
[TR]
[TD="align: right"]31-10-16[/TD]
[TD="align: right"]04-09-12[/TD]
[TD]708136David Juxy[/TD]
[TD="align: right"]708136[/TD]
[TD]David Juxy[/TD]
[/TR]
[TR]
[TD="align: right"]30-04-16[/TD]
[TD="align: right"]26-03-12[/TD]
[TD]708364Jennifer Nolan [/TD]
[TD="align: right"]708364[/TD]
[TD]Jennifer Nolan [/TD]
[/TR]
[TR]
[TD="align: right"]31-07-16[/TD]
[TD="align: right"]26-03-12[/TD]
[TD]708364Jennifer Nolan [/TD]
[TD="align: right"]708364[/TD]
[TD]Jennifer Nolan [/TD]
[/TR]
</tbody>[/TABLE]
As you can see the patter is that there is a record every 3 months, so when an employee is not recorded in the next record (effective date) it means he/she has left the company. So, in my opinion I'd need a new column that would flag or count those employees. For example, the red highlighted employees should be counted to those who left since they are not recorded in next months record.
Can that be done without a VB macro?