I'm evaluating a data set of Median product prices against a 100-point product rating scale.
The data I have to work with are below. The Correlation of Rating to Median Price is 0.922. Since all of the products rated so far have fallen into the rating range of 87 to 95 I want to predict the median price (dependent variable) for a broader range of ratings (independent variable). I have done so with a simple linear regression which yields an R-squared of 0.85 (ignoring the number of observations).
Question: Since I know the number of observations from which the Median data has been derived, should I take account of the number of observations in my analysis, and if so how?
DATA:
[TABLE="width: 191"]
<tbody>[TR]
[TD="class: xl65, width: 71"]Observations[/TD]
[TD="class: xl65, width: 51"]Rating[/TD]
[TD="class: xl66, width: 69"]Median Price[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]4[/TD]
[TD="class: xl65, width: 51"]95[/TD]
[TD="class: xl63"]92.5[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]6[/TD]
[TD="class: xl65, width: 51"]94[/TD]
[TD="class: xl63"]82.5[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]10[/TD]
[TD="class: xl65, width: 51"]93[/TD]
[TD="class: xl63"]49[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]29[/TD]
[TD="class: xl65, width: 51"]92[/TD]
[TD="class: xl63"]46[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]31[/TD]
[TD="class: xl65, width: 51"]91[/TD]
[TD="class: xl63"]45[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]27[/TD]
[TD="class: xl65, width: 51"]90[/TD]
[TD="class: xl63"]40[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]22[/TD]
[TD="class: xl65, width: 51"]89[/TD]
[TD="class: xl63"]45[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]6[/TD]
[TD="class: xl65, width: 51"]88[/TD]
[TD="class: xl63"]23[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]1[/TD]
[TD="class: xl65, width: 51"]87[/TD]
[TD="class: xl63"]13[/TD]
[/TR]
</tbody>[/TABLE]
<style>table { }td { padding-top: 1px; padding-right: 1px; padding-left: 1px; color: black; font-size: 12pt; font-weight: 400; font-style: normal; text-decoration: none; font-family: Calibri, sans-serif; vertical-align: bottom; border: medium none; white-space: nowrap; }.xl63 { text-align: center; }.xl64 { vertical-align: middle; white-space: normal; }.xl65 { text-align: center; vertical-align: middle; white-space: normal; }.xl66 { text-align: center; vertical-align: middle; }</style>
[TABLE="width: 71"]
<tbody>[TR]
[TD="class: xl63, width: 71"][/TD]
[/TR]
</tbody>[/TABLE]
[TABLE="width: 191"]
<tbody>[TR]
[/TR]
[TR]
[/TR]
[TR]
[/TR]
[TR]
[/TR]
[TR]
[TD="class: xl63"][/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"][/TD]
[TD="class: xl65, width: 51"][/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"][/TD]
[TD="class: xl65, width: 51"][/TD]
[TD="class: xl63"][/TD]
[/TR]
[TR]
[/TR]
[TR]
[/TR]
[TR]
[TD="class: xl63"][/TD]
[/TR]
</tbody>[/TABLE]
<style>table { }td { padding-top: 1px; padding-right: 1px; padding-left: 1px; color: black; font-size: 12pt; font-weight: 400; font-style: normal; text-decoration: none; font-family: Calibri, sans-serif; vertical-align: bottom; border: medium none; white-space: nowrap; }.xl63 { text-align: center; }.xl64 { vertical-align: middle; white-space: normal; }.xl65 { text-align: center; vertical-align: middle; white-space: normal; }.xl66 { text-align: center; vertical-align: middle; }</style>
The data I have to work with are below. The Correlation of Rating to Median Price is 0.922. Since all of the products rated so far have fallen into the rating range of 87 to 95 I want to predict the median price (dependent variable) for a broader range of ratings (independent variable). I have done so with a simple linear regression which yields an R-squared of 0.85 (ignoring the number of observations).
Question: Since I know the number of observations from which the Median data has been derived, should I take account of the number of observations in my analysis, and if so how?
DATA:
[TABLE="width: 191"]
<tbody>[TR]
[TD="class: xl65, width: 71"]Observations[/TD]
[TD="class: xl65, width: 51"]Rating[/TD]
[TD="class: xl66, width: 69"]Median Price[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]4[/TD]
[TD="class: xl65, width: 51"]95[/TD]
[TD="class: xl63"]92.5[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]6[/TD]
[TD="class: xl65, width: 51"]94[/TD]
[TD="class: xl63"]82.5[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]10[/TD]
[TD="class: xl65, width: 51"]93[/TD]
[TD="class: xl63"]49[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]29[/TD]
[TD="class: xl65, width: 51"]92[/TD]
[TD="class: xl63"]46[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]31[/TD]
[TD="class: xl65, width: 51"]91[/TD]
[TD="class: xl63"]45[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]27[/TD]
[TD="class: xl65, width: 51"]90[/TD]
[TD="class: xl63"]40[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]22[/TD]
[TD="class: xl65, width: 51"]89[/TD]
[TD="class: xl63"]45[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]6[/TD]
[TD="class: xl65, width: 51"]88[/TD]
[TD="class: xl63"]23[/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"]1[/TD]
[TD="class: xl65, width: 51"]87[/TD]
[TD="class: xl63"]13[/TD]
[/TR]
</tbody>[/TABLE]
<style>table { }td { padding-top: 1px; padding-right: 1px; padding-left: 1px; color: black; font-size: 12pt; font-weight: 400; font-style: normal; text-decoration: none; font-family: Calibri, sans-serif; vertical-align: bottom; border: medium none; white-space: nowrap; }.xl63 { text-align: center; }.xl64 { vertical-align: middle; white-space: normal; }.xl65 { text-align: center; vertical-align: middle; white-space: normal; }.xl66 { text-align: center; vertical-align: middle; }</style>
[TABLE="width: 71"]
<tbody>[TR]
[TD="class: xl63, width: 71"][/TD]
[/TR]
</tbody>[/TABLE]
[TABLE="width: 191"]
<tbody>[TR]
[/TR]
[TR]
[/TR]
[TR]
[/TR]
[TR]
[/TR]
[TR]
[TD="class: xl63"][/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"][/TD]
[TD="class: xl65, width: 51"][/TD]
[/TR]
[TR]
[TD="class: xl65, width: 71"][/TD]
[TD="class: xl65, width: 51"][/TD]
[TD="class: xl63"][/TD]
[/TR]
[TR]
[/TR]
[TR]
[/TR]
[TR]
[TD="class: xl63"][/TD]
[/TR]
</tbody>[/TABLE]
<style>table { }td { padding-top: 1px; padding-right: 1px; padding-left: 1px; color: black; font-size: 12pt; font-weight: 400; font-style: normal; text-decoration: none; font-family: Calibri, sans-serif; vertical-align: bottom; border: medium none; white-space: nowrap; }.xl63 { text-align: center; }.xl64 { vertical-align: middle; white-space: normal; }.xl65 { text-align: center; vertical-align: middle; white-space: normal; }.xl66 { text-align: center; vertical-align: middle; }</style>